Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

3Â÷¿ø À¯ÇÑ¿ä¼Ò¹ýÀ» ÀÌ¿ëÇÑ ±³Á¤¿ë ¸¶ÀÌÅ©·ÎÀÓÇöõÆ® ½Ä¸³ ½ÃÀÇ ÇÇÁú°ñ ½ºÆ®·¹ÀÎ Çؼ®

Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis

Korean Journal of Orthodontics 2008³â 38±Ç 4È£ p.228 ~ 239
³²¿ÁÇö, À¯¿øÀç, °æÈñ¹®,
¼Ò¼Ó »ó¼¼Á¤º¸
³²¿ÁÇö ( Nam Ok-hyun ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
À¯¿øÀç ( Yu Won-Jae ) - °æºÏ´ëÇб³ Ä¡ÀÇÇÐÀü¹®´ëÇпø ±³Á¤Çб³½Ç
°æÈñ¹® ( Kyung Hee-Moon ) - °æºÏ´ëÇб³ Ä¡°ú´ëÇÐ ±³Á¤Çб³½Ç

Abstract

½Ä¸³ ÈÄ ÈûÀÇ ºÎÇÏ°¡ Á¶±â¿¡ ÀÌ·ç¾îÁö´Â ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®ÀÇ °æ¿ì ½Ä¸³ ½ÃÀÇ °ñÀÀ·Â ȤÀº ½ºÆ®·¹ÀÎÀÇ °ü¸®°¡ ±× ¾ÈÁ¤¼º¿¡ ÀÖ¾î Áß¿äÇÑ ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ´Ù. ÀÌ¿¡ º» ¿¬±¸¿¡¼­´Â 3D À¯ÇÑ¿ä¼Ò¹ýÀ» »ç¿ëÇÏ¿© ±³Á¤¿ë ¸¶ÀÌÅ©·ÎÀÓÇöõÆ® ½Ä¸³ ½Ã ÇÇÁú°ñ¿¡ ¹ß»ýÇÏ´Â ÀÀ·Â(½ºÆ®·¹ÀÎ)À» Çؼ®ÇÏ¿´´Ù. 0.9 mm Á÷°æÀ¸·Î ¹Ì¸® µå¸±¸µÇÑ 1 mm µÎ²² ÇÇÁú°ñ¿¡ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®(AbsoAnchor SH1312-7, Dentos, Daegu, Korea)°¡ ½Ä¸³µÇ´Â Àüü °úÁ¤(10ȸÀü, ½Ä¸³ ±íÀÌ 5mm)ÀÇ ¸ð»ç¸¦ À§ÇØ ÃÑ 1,800 stepÀÇ À¯ÇÑ¿ä¼ÒÇؼ®À» ½Ç½ÃÇÏ¿´´Ù. ½Ä¸³ ÁøÇà°ú ´õºÒ¾î »ý±â´Â ³ª»ç»ê ÁÖÀ§ ÇÇÁú°ñÀÇ ±âÇÏÇÐÀû Çü»óº¯È­¸¦ À¯ÇÑ¿ä¼ÒÇؼ®¿¡ ¹Ý¿µÇϱâ À§ÇÏ¿© Áö¼ÓÀûÀÎ remesh¸¦ ½ÇÇàÇÏ¿´À¸¸ç, ºü¸¥ ¼ö·ÅÀ» À§ÇØ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®´Â °­Ã¼·Î, ÇÇÁú°ñÀº °­¼Ò¼ºÃ¼·Î ¸ðµ¨¸µÇÏ¿´´Ù. Çؼ® °á°ú, ¸¶ÀÌÅ©·ÎÀÓÇöõÆ® ½Ä¸³ ½Ã ÇÇÁú°ñ¿¡ ¹ß»ýµÇ´Â ½ºÆ®·¹ÀÎÀº ÀÓÇöõÆ® ÁÖÀ§°ñ Àüü¿¡¼­ Á¤»óÀûÀÎ °ñ°³ÇüÀ» À§ÇÑ ÇÑ°èÄ¡·Î º¸°íµÇ°í ÀÖ´Â 4,000¥ì-strainÀ» »óȸÇÏ¿´°í, ³ª»ç»ê ÷ºÎ ÀÎÁ¢°ñ¿¡¼­´Â ½ºÆ®·¹ÀÎÀÌ 100% ÀÌ»ó¿¡ ´ÞÇÏ¿´´Ù. °è»êµÈ ÇÇÁú°ñ ½Ä¸³Åä¿ÀÅ©´Â ¾à 1.2 Ncm Á¤µµ·Î °¡Åä °æ°ñ¿¡ µ¿ÀÏ ¸ðµ¨ÀÇ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®À» ½Ä¸³Çϸç ÃøÁ¤ÇÑ °ª¿¡ ¾à°£ ¹Ì´ÞÇÏ¿´À¸³ª ±ÙÁ¢ÇÑ ¼öÄ¡¸¦ º¸¿´´Ù. º» ¿¬±¸¸¦ ÅëÇØ, ¸¶ÀÌÅ©·ÎÀÓÇöõÆ®ÀÇ ½Ä¸³°úÁ¤À» 3D À¯ÇÑ¿ä¼Ò¹ýÀ¸·Î ÀçÇöÇÒ ¼ö ÀÖÀ½À» È®ÀÎÇÏ¿´°í, ¶ÇÇÑ ¸¶ÀÌÅ©·ÎÀÓÇöõÆ® ½Ä¸³¿¡ ÀÇÇØ ÇÇÁú°ñ¿¡ ¹ß»ýÇÏ´Â ½ºÆ®·¹ÀÎ Å©±â´Â »ý¸®ÀûÀÎ °ñ°³ÇüÀ» ÀúÇØÇÒ ¼ö ÀÖ´Â ¼öÁØÀÓÀ» È®ÀÎÇÒ ¼ö ÀÖ¾ú´Ù. (´ëÄ¡±³Á¤Áö 2008;38(4):228-239)

Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion.

Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion.

Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias.

Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone. (Korean J Orthod 2008;38(4):228-239)

Å°¿öµå

±³Á¤¿ë¸¶ÀÌÅ©·ÎÀÓÇöõÆ®;½Ä¸³½ºÆ®·¹ÀÎ;3DÀ¯ÇÑ¿ä¼Ò¹ý;µ¿¹°½ÇÇè
Microimplant;Strainduringinsertion;3Dfiniteelementmethod;Rabbitexperiment

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

SCI(E)
KCI
KoreaMed